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Abstract. The domain-growth properties of the two-dimensional single spin-Rip kinetic king 
model with a Metropolis-type transition function and checkaboard updating an investigated 
numerically with quenches from the high-temperature phase to temperatures in the ordered 
phase andto Tc. Measuring the stmeture factor S(0, t )  c( tZr md the autocorrelotion function 
A(t) c( trAX as a function of time, the effect of deterministic dynamics at T = 0 with x = 1.0 is 
followed throughout the ordered phase. At T < 7,. T 9 T,, crossover from x = 1.0 to x = 0.5 
is shown to occur with increasing time and even at T = T, the scaling exponents are still 
discernibly dependent on time. i. however, is found to be unaffected in the whole temperature 
m5. 

1. Introduction 

In the field of ordering kinetics one of the most interesting problems is the question of 
universality. It has long been clear that the conserved or non-conserved character of the 
order parameter plays an important role. Kinetic king models offer a useful laboratory for 
exploring the different factors which influence the scaling behaviour and the characteristic 
exponents of domain growth. The two-dimensional kinetic Ising model with Metropolis- 
type single spin-flip dynamics and checkerboard updating has been shown [l] to fall into 
a new universality class of domain growth for quenches from the high-temperature phrise 
(T = m) to zero temperature. At T = 0 this model is deterministic and even the applied 
updating does not introduce any random element. This is the reason why the exponent x 
of the characteristic length scale L( t )  M t X  was found to be 1.0 in contrast to the usual 
(Allen-Cahn [Z]) value I/?. for a scalar non-conserved order parameter, obtainable with 
Glauber kinetics [3]. Numerical simulations have now been extended to temperatures up to 
T,.  besides the'structure factor we have measured the autocomelation function, A@), the 
importance of which has only recently been recognized [4,5]. 

Concerning the characteristic length scale L(t)  and the domain-growth exponent, x ,  
we have found that the characteristic time ro connected with the rate of transition from 
determinicity, w = exp(-4J/kT), plays an important role as 70 M l/w. In the temperature- 
time plane SO separates the 'phase diagram' into parts with x = 1.0 and x = 112 in such a 
way that, asymptotically, the latter dominates. 

Further numerical evidence is provided here for the conjecture [5] that the exponent 
in the expression A ( t )  M f-" is independent of the details of the dynamics, by showing 
that it is not influenced by the determinicity at T = 0 (the same is true at dimensionality 
one, in the same model, where x also equals 1.0, the ballistic motion is more smking [6]). 
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At Tc the comparison between Metropolis and Glauber kinetics with checkerboard 

We consider the ferromagnetic king model in a two-dimensional (2D) square lattice of 
updating is analysed on the basis of simulation results. 

size L with the Hamiltonian 

-J  
H = - E  sisj 

kT i . j  

where the sum extends over the four nearest neighbours and si = il. 

the heat bath. The Metropolis transition rate [7] for flipping a spin at site i is given as 
The dynamics of the king model is defined, as usual, via a stochastic interaction with 

Wi = min[l, exp(-AH)] (1.2) 

where AH = ( Z J / k T ) s i  C,,sj is the energy needed for the flip; the sum runs over nearest 
neighbours. By applying this rule, checkerboard updating [8] is used. This circumstance 
gives rise to dynamics basically different from Glauber typedynamics due to its deterministic 
nature at zero temperature. 

To investigate the time development of domain growth we consider the structure factor, 
S ( k ,  t ) ,  which is the Fourier transform of the equal-time correlation function C(r, t ) ,  

where the angular brackets denote averaging over initial conditions. The scaling forms of 
S ( k .  t) and C(r,  t )  are (see e.g. 151) 

S(k,  t )  = L( t )dg (kL( t ) )  C(r, t )  = f ( r / L ( t ) )  L(t)  c( tX  for T 0. (1.4) 

L(r) is the characteristic length for quenches deep into the ordered phase: x is the domain- 
growth exponent. For quenches to T,, critical scaling yields 

(1.5) S ( k ,  I )  = k-2*"&t(t)) S(0, t )  c( t*-yt) c( t Y / " Z  

with c(r) c( t 'lz, the non-equilibrium correlation length and C(r,  t )  = rd-'+'lfc(r/5(t)). 
We shall also numerically study the autocorrelation function A@) 

which is connected with the response to initial conditions (see [SI). A@) can also be written 
in scaling form: 

h and h, are new exponents for dynamic correlations apparently independent of x and 
Z, respectively. For the 2D king model with Glauber kinetics x = 0.5, the value well 
known for a non-conserved scalar order parameter [Z]. Moreover, xc = 7/82 Fs 0.4, using 
y / u  = 1.75 and 2 = 2.2 19, IO]. Concerning ,i and IC Humayun and Bray [5] reported 
the following results for Monte Carlo simulations with Glauber kinetics: = 1.24 and 
i, = 1.59 * 0.02. 
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Figure 1. Log-log plot of the autocorrelation function at T = 0. 

2. Simulations 

Using the Hamiltonian, equation (1.1). and defining the dynamics of the Ising system 
through equation (1.2) plus prescribing synchronous checkerboard updating, simulations 
were performed for lattices of size N = 50 x 50 to N = 800 x 800, with periodic 
boundary conditions. In each case the system was started from a random distribution 
of spins (T = 00). Statistical errors are everywhere up to about 10%. 

2.1. Quench and equilibration af T = 0 

In a previous paper [I] the author reported simulations of S(0, t )  and the excess energy 
density: 

The values obtained there were x = y = 1.0, in contrast to the standard values for the 
non-conserved order parameter, x = y = 1/2. In [ I ]  it was also stressed that to see scaling, 
sufficiently large lattices have to be used deterministic dynamics at T = 0 causes the 
development of flat domain walls which cannot change any further when L ( t )  c( 20” = L is 
reached; hence freeze-in of the domains sets in. Currently we are interested in finding the 
value of the exponent i x  i of the autocorrelation function (1.7) to complete the above 
mentioned results. Data are presented for lattices of size 800 x 800 with averages over 1000 
independent initial states. The least-mean-square fit to the data shown on figure 1 yields 

xMeuop = 1.25 f 0.03 
a value which agrees within the errors with that for Glauber dynamics ([5] and references 
therein). A small increase in the exponent with time has also been observed in the present 
simulations. 

Data for the equal-time correlation function (1.3) is shown on figure 2 with r / t  on the 
x axis. In spite of the relatively poor statistics, the data collapse onto a universal curve 
confirming the scaling form (la), and L(t)  c( t .  
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Fiyre 2. Equal-time correlation function for diffmnt values of the distance r :  lattice size, 
N = 200 x 200: number of independent initial slates in the averaging, 250. 

2.2. Quench and equilibration in intermediae temperatures 

At T iy 0, T < Tc, crossover fTom the T = 0 behaviour to Glauber-type behaviour is 
apparent in the time development of the domains. This feature is illustrated in figure 3, 
where numerical results for S(0, t )  are depicted for several values of the temperature in the 
ordered phase. Here w = exp(-4J/kT) emerges naturally as a measure of temperature; it 
is the transition rate from the deterministic ground state. Tc corresponds to w = 0.1716. 
Two characteristic times, ro and r,, can be identified on the curves of figure 3 as the time 
of crossover and the time of saturation due to finite size. respectively. Below the crossover 
time the growth exponent is the same as that at zero temperature (x  = 1.0); the magnitude 
of ro is proportional to the inverse of the transition rate w, so M 1 fw. for w << 1, while 
the Characteristic time of saturation is T, M L'Ix (see e.g. [ll]]. Thus, for example, for 
L = 200 and w = 0.01 no crossover,,regime can be seen before, saturation sets in (curve 
b on figure 3). The effective gowth exponent, i.e. the exponent of the best power-law fit 
in a given time interval, x,ff, between the two characteristic times, is expected to approach 
the Glauber value asymptotically if L + 00. For finite L,  however, rs is determined 
by x,ff > 0.5. To calculate q usini ?9 = L' /xcn,  however, the first section of the time 
developmen' has to be taken into correction. 

For fixed L ,  x e ~  decreases with increasing w. Thus for L = 200, xes = 0.71,0.62 and 
0.50 for w = 0.08,O.l and 0.14, respectively (curves d, e and f on figure 3). Moreover, 
for given L and w, x,g also has a slight time dependence; thus, for example, for L = 800, 
w = 0.08, ,rea is equal to 0.67, 0.62, 0.56, 0.53 and 0.50 in the intervals f =50-100, 100- 
200, 200-500, 500400 and 700-800, ~respectively. As to the autocorrelation function A(t) ,  
its exponent, i x e 8  changes with w so that h remains at its zero-temperature value, within 
the error of the simulations. In the same runs as those above for w = 0.08, L = 800 for 
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Figure 3. Shucture factor as a function of time on a double-logarithmic swle for six values 
in the temperature nnge 0 < T < T,: (a)w~= 0, (b)w = 0.01, (c)w = 0.05, (d)w = 0.08, 
(e)w = 0.14, (0 xu = O.1716(Tc). rg and r, refer to the curve (d). Laltice sire: N = 200 x 200; 
number of states in the averaging :1000. 500, 500, 500, 500 and 1800, respectively. 

~. 

times up to I =~800 with averaging over 500 independent initial states we found x , ~  = 0.57, 
heif = 0.70 between t = 80 and t = 800 yielding 1 = 1.2. The time dependence here 
is: i x , ~  changes in the time intervals as above like 0.69, 0.72, 0.70, 0.65 and 0.62, giving 
for 1 1.0, 1.16, 1.26, 1.23 and 1.24, respectively. Similar behaviour has been found for 
w = 0.05, 0.1, 0.14 etc. 

2.3. Quench and equilibration at Tc 

For this quench we simulated lattices of size N = 200 x 200 up to f = 2000; the 
corresponding curve for S(0, t )  is shown on figure 3(e). The effective exponent (best- 
fit value in a given time interval) in the interval of>tyo decades is &,fi = 0.8. The 
autocorrelation function, however, exhibits such large fluctuations for t > 100 that no 
conclusion could be drawn conceming its exponent. To find xc another series of runs has 
been carried out for L = 400 and with averaging over IO4 independent random initial 
states, in the interva! t = 1-200. Our results are shown in figure 4, where S(0, t )  and 

are depicted on a double-logarithmic scale. Power-law behaviour can be identified 
but with somewhat time-dependent exponents. At T = T, equations (1.5) and (1.8) are 
expected to be valid. Effective Z values can also be deduced through 2xc = y / u Z .  The 
best-fit exponents together with the corresponding Zs are shown in table 1. These values 
(considering time dependences, too) are in accord with those reported recently by Ito [IO] 
for the the Metropolis transition rate with checkerboard updating through a finite-size scaling 
formula for the decay of magnetization in the limit N + CO. 

The inverse of the autocorrelation function as a function of time is also shown in 
figure 4, on a double-logarithmic scale. The exponent again exhibits slight changes with 
temperature: the third column of table 1 shows the best-fit values in different time intervals 
and values of L.  
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F i y r e  4. Plot of S(0, f )  and A,(r)-' on a double-logarithmic scale. Data are averaged over lo4 
histories of a 400 x 400 system. 

Table 1. Best-fit exponents of S(0. f )  and A(f) at T = Tc. For L = 200 the number of states 
averaged is 1800; here. due to fluctuations, the autocorrelation function could be evaluated only 
up to f = 200. For L = 400 the data f" figure 4 hwe k e n  used. In column 4, the value of 
Z deduced from 2r, = 7/42 is given in parentheses while column 5 contains the 1,s obtained 
from results in column 3 with 2s in wlumn 4. 

Time interval zx, LIZ 2 i, 
20-200O(L =ZOO) 0.80 ~ - (2.2) - 
20-ZOOIL = 200) 0.85 0.75 I2.1) (1.6) 
20-2OO(L = 400) 0.86 0.78 ('2.0) (1.6) 
Value in [S] 
for Glauber MC 0.81 0.74 (2.16) (1.6) 

It is apparent that the obtained data, asymptotically and within the error of simulations, 
agree with those reported for Glauber kinetics [SI. This fact is not surprising as the crossover 
results in the preceding section have already indicated that in the asymptotic regime and at 
finite temperamres the differences between Metropolis and Glauber kinetics disappear. 

We have made simulations at T = T, for Glauber kinetics with checkerboard updating 
to check for differences at earlier times. For lattices of size 400 x 400 and with averages 
over 3500 independent initial conditions our results show that in the time intervals t = 10- 
50, 50-100 and 100-200, 2x, takes the best-fit values of 0.85, 0.83 and 0.82, respectively, 
while in the Metropolis case (for L =-400, 104 averages) Zx, changes in the same intervals 
to 0.96, 0.89 and 0.78, respectively. Thus in the Glauber case, in spite of the lower (U3) 
number of independent states in the averaging over initial conditions, there is much (five 
times) less change with time in the effective exponents. It is apparent that Glauber kinetics 
is much less sensitive to size effects. 

We have also checked the scaling behaviour of the equal-time correlation function (1.5); 
the result is shown in figure 5, where C(r, t)r1/4 is depicted with the abscissa being the 
scaling variable r / t ' l z ,  using 2 = 2.1. 
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Figure 5. Scaling plot of the equal-time correlation function for quenching from T = m to 
T = Tc: System sire, 400 x 4M); number of stales in the averaging, 750. 

3. Discussion 

The growth properties of the two-dimensional single spin-flip kinetic Ising model with 
a Metropolis-type transition function and checkerboard updating have been investigated 
numerically. The ferromagnetic structure factor and the autocorrelation function as a 
function of time have been studied at different temperatures below T, and at T,. It is usually 
stressed 15,121 that domain growth in the ordered phase is dominated by the T = 0 fixed 
point in the framework of a renormalization group calculation. In the case investigated here 
the limits T -+ 0 and t -+ 00 are not interchangeable: at T = 0, f + 03 x = 1.0 while for 
any T # 0, T < T,, and t -+ 00 Allen-Cahn-type behaviour sets in, in the thermodynamic 
limit. For finite times and L,  crossover between these two types of behaviour is observed 
with exponent xes 2 1/2, which decreases with increasing w for fixed L. 

At T, our motivation has been to see whether some behaviour reminiscent of that 
in the time development of growth is- still present or whether it now follows Glauber 
kinetics. We have found discernible differences between Glauber and Metropolis kinetics 
with checkerboard updating for the quantities investigated here in the non-asymptotic 
regime unfavourably to the latter. Much bigger (finitesize) fluctuations especially in 
the autocorrelation function and larger time dependences in the effective growth exponent 
characterize simulations with the Metropolis model in comparison with the Glauber one. 
The present investigations suggest that the 'bad nature' of the Metropolis case can be traced 
back to its determinicity at zero temperature with the corresponding crossover behaviour for 
finite values of T .  These findings offer an explanation for the simulation results reported 
recently for the critical dynamical exponent Z by It0 [ 101, who found pronounced differences 
in the way the (apparently universal) asymptotic value ( L  + 00, f + 00) is approached 
for the two models mentioned above. 
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By measuring the exponent of the autocorrelation function ,i in the whole interval 
0 < T .c T, we have provided a further check and support, at least for the case of initial 
conditions with short-range correlations, for the idea [SI that is unrelated to the exponent 
describing the growth of domains with time. Analytical confirmation exists only for the 
case n --f 00 [12], where n is the number of components of the order parameter. The effect 
of crossover, being connected with the motion of domain walls only, was practically (i.e. 
within the errors of simulations) unobservable in x. 
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